Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION

PRODUCT USE
Indicated for the treatment of poisoning and drug over dosage by oral ingestion.

SUPPLIER
Company: Phebra Pty Ltd
Address:
332 Burns Bay Road
Lane Cove
NSW, 2066
Australia
Telephone: +61 2 9420 9199
Telephone: 1800 720 020
Fax: +61 2 9420 9177
Email: info@phebra.com

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE
NON-HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min/Nil=0</th>
<th>Low=1</th>
<th>Moderate=2</th>
<th>High=3</th>
<th>Extreme=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCALE:
- Min/Nil=0
- Low=1
- Moderate=2
- High=3
- Extreme=4

RISK
- May cause fire.
- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes and respiratory tract*.
- Possible skin sensitiser*.

SAFETY
- Do not breathe gas/ fumes/ vapour/ spray.
- Avoid contact with skin.
- Wear eye/ face protection.
- In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.

continued...
CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION

Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet
Issue Date: 21-Jul-2010
NC317TCP

Section 2 - HAZARDS IDENTIFICATION

* (limited evidence).

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D- sorbitol</td>
<td>50-70-4</td>
<td>30.9</td>
</tr>
<tr>
<td>carbon, activated</td>
<td>7440-44-0</td>
<td>15.5</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>57-55-6</td>
<td>15.1</td>
</tr>
<tr>
<td>glycerol</td>
<td>56-81-5</td>
<td>15.1</td>
</tr>
<tr>
<td>citric acid</td>
<td>77-92-9</td>
<td>0.133</td>
</tr>
<tr>
<td>water</td>
<td>7732-18-5</td>
<td><23.3</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

- Treat symptomatically.

continued...
Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA
• Foam.
• Dry chemical powder.
• BCF (where regulations permit).
• Carbon dioxide.
• Water spray or fog - Large fires only.

FIRE FIGHTING
• Alert Fire Brigade and tell them location and nature of hazard.
• Wear full body protective clothing with breathing apparatus.
• Prevent, by any means available, spillage from entering drains or water course.
• Use water delivered as a fine spray to control fire and cool adjacent area.
• Avoid spraying water onto liquid pools.
• DO NOT approach containers suspected to be hot.
• Cool fire exposed containers with water spray from a protected location.
• If safe to do so, remove containers from path of fire.

FIRE/EXPLOSION HAZARD
• Combustible.
• Slight fire hazard when exposed to heat or flame.
• Heating may cause expansion or decomposition leading to violent rupture of containers.
• On combustion, may emit toxic fumes of carbon monoxide (CO).
• May emit acrid smoke.
• Mists containing combustible materials may be explosive.
Combustion products include: carbon dioxide (CO2), acrolein, other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

HAZCHEM
None

Personal Protective Equipment
Gas tight chemical resistant suit.
Limit exposure duration to 1 BA set 30 mins.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
• Remove all ignition sources.
• Clean up all spills immediately.
• Avoid breathing vapours and contact with skin and eyes.
• Control personal contact by using protective equipment.
• Contain and absorb spill with sand, earth, inert material or vermiculite.
• Wipe up.
• Place in a suitable, labelled container for waste disposal.
MAJOR SPILLS
■ Moderate hazard.
• Clear area of personnel and move upwind.
• Alert Fire Brigade and tell them location and nature of hazard.
• Wear breathing apparatus plus protective gloves.
• Prevent, by any means available, spillage from entering drains or water course.
• No smoking, naked lights or ignition sources.
• Increase ventilation.
• Stop leak if safe to do so.
• Contain spill with sand, earth or vermiculite.
• Collect recoverable product into labelled containers for recycling.
• Absorb remaining product with sand, earth or vermiculite.
• Collect solid residues and seal in labelled drums for disposal.
• Wash area and prevent runoff into drains.
• If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
• DO NOT allow clothing wet with material to stay in contact with skin.
NOTE:
• Wet, activated carbon removes oxygen from the air thus producing a severe hazard to workers inside carbon vessels and in enclosed or confined spaces where activated carbons might accumulate.
• Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply.
• Avoid all personal contact, including inhalation.
• Wear protective clothing when risk of exposure occurs.
• Use in a well-ventilated area.
• Prevent concentration in hollows and sumps.
• DO NOT enter confined spaces until atmosphere has been checked.
• DO NOT allow material to contact humans, exposed food or food utensils.
• Avoid contact with incompatible materials.
• When handling, DO NOT eat, drink or smoke.
• Keep containers securely sealed when not in use.
• Avoid physical damage to containers.
• Always wash hands with soap and water after handling.
• Work clothes should be laundered separately. Launder contaminated clothing before re-use.
• Use good occupational work practice.
• Observe manufacturer’s storing and handling recommendations.
• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

SUITABLE CONTAINER
• Polyethylene or polypropylene container.
• Packing as recommended by manufacturer.
• Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY
■ Glycerol:
• reacts violently with strong oxidisers, acetic anhydride, alkali metal hydrides, calcium hypochlorite,
calcium oxychloride, chlorine, chromic anhydride, chromium oxides, ethylene oxide, hydrogen peroxide, phosphorous triiodide, potassium chloride, potassium permanganate, potassium peroxide, silver perchlorate, sodium hydride, sodium peroxide, sodium triiodide, sodium tetrahydroborate, is incompatible with strong acids, caustics, aliphatic amines, isocyanates, uranium fluoride

• is able to polymerise above 145 C.

• Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glycercyl nitrate, and the former so sensitive that it explodes on addition of water.

• Avoid reaction with oxidising agents, bases and strong reducing agents.

• Activated carbon, when exposed to air, represents a potential fire hazard due to a high surface area and adsorptive capacity. Freshly prepared material may ignite spontaneously in the presence of air especially at high humidity. Spontaneous combustion in air may occur at 90-100 deg. C. The presence of moisture in air facilitates the ignition. Drying oils and oxidising oils promote spontaneous heating and ignition; contamination with these must be avoided. Unsaturated drying oils (linseed oil etc.) may ignite following adsorption owing to an enormous increase in the surface area of oil exposed to air; the rate of oxidation may also be catalysed by metallic impurities in the carbon. A similar, but slower effect occurs on fibrous materials such as cotton waste. Spontaneous heating of activated carbon is related to the composition and method of preparation of the activated carbon. Free radicals, present in charcoal, are responsible for autoignition. Self-heating and autoignition may also result from adsorption of various vapours and gases (especially oxygen). For example, activated carbon auto-ignites in flowing air at 452-518 deg. C.; when the base, triethylenediamine, is adsorbed on the carbon (5%) the autoignition temperature is reduced to 230-260 deg. C. An exotherm is produced at 230-260 deg. C., at high flow rates of air, although ignition did not occur until 500 deg. C.. Mixtures of sodium borohydride with activated carbons, in air, promote the oxidation of sodium borohydride, producing a self-heating reaction that may result in the ignition of charcoal and in the production of hydrogen through thermal decomposition of the borohydride.

STORAGE REQUIREMENTS

- Carbon and charcoal may be stabilised for storage and transport, without moistening, by treatment with hot air at 50 deg. C.. Use of oxygen-impermeable bags to limit oxygen and moisture uptake has been proposed. Surface contamination with oxygenated volatiles may generate a heat of reaction (spontaneous heating). Should stored product reach 110 deg. C., stacked bags should be pulled apart with each bag separated by an air space to permit cooling away from other combustible materials.
- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

+ : May be stored together
O : May be stored together with specific preventions
X : Must not be stored together
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>150</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>150</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following materials had no OELs on our records:
- D- sorbitol: CAS:50- 70- 4
- citric acid: CAS:77- 92- 9
- water: CAS:7732- 18- 5

EMERGENCY EXPOSURE LIMITS

Material: carbon, activated

Original IDLH Value (ppm)

MATERIAL DATA

CARBON, ACTIVATED:

CITRIC ACID:

GLYCEROL:

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this continued...
is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

CITRIC ACID:
D-SORBITOL:
- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

CARBON, ACTIVATED:
CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION:
- The TLV-TWA for carbon black is recommended to minimise complaints of excessive dirtiness and applies only to commercially produced carbon blacks or to soots derived from combustion sources containing absorbed polycyclic aromatic hydrocarbons (PAHs). When PAHs are present in carbon black (measured as the cyclohexane-extractable fraction) NIOSH has established a REL-TWA of 0.1 mg/m³ and considers the material to be an occupational carcinogen.

The NIOSH REL-TWA was “selected on the basis of professional judgement rather than on data delineating safe from unsafe concentrations of PAHs”.

This limit was justified on the basis of feasibility of measurement and not on a demonstration of its safety.

CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION:
PROPYLENE GLYCOL:
- for propylene glycol:
 Saturated vapour concentration @ 20 deg C.= 65.8 ppm, 204.6 mg/m³; i.e higher concentrations can only occur as aerosols or at higher temperatures.
 Odour Threshold: Practically odourless.

A small number of individuals show skin irritation or sensitisation from repeated or prolonged exposure to propylene glycol. A workplace environmental exposure limit (WEEL) has been established by AIHA and is thought to be protective against systemic effects.

CARBON, ACTIVATED:
- NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans.
- as fine dust: defined as a dust which can reach the alveolar region of the lung.

MAK Group C: There is no reason to fear risk of damage to the developing embryo when MAK and BAT values are observed.

MAK values, and categories and groups are those recommended within the Federal Republic of Germany.

as carbon black CAS RN 1333-86-4
TLV TWA: 3.5 mg/m³ A4
ES TWA: 3 mg/m³
MAK value: 6 mg/m³

GLYCEROL:
The mist is considered to be a nuisance particulate which appears to have little adverse effect on the lung and does not produce significant organic disease or toxic effects. OSHA concluded that the nuisance particulate limit would protect the worker from kidney damage and perhaps, testicular effects.

WATER:
- No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

- **EYE**
 - Safety glasses with side shields.
 - Chemical goggles.
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

- **HANDS/FEET**
 - Wear chemical protective gloves, eg. PVC.
 - Wear safety footwear or safety gumboots, eg. Rubber.

 NOTE:
 - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
 - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
 - Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
 - Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

continued...
OTHER
• Overalls.
• P.V.C. apron.
• Barrier cream.
• Skin cleansing cream.
• Eye wash unit.

RESPIRATOR
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS
■ Exhaust ventilation should be designed to prevent accumulation and recirculation in the workplace and safely remove carbon black from the air.
Note: Wet, activated carbon removes oxygen from the air and thus presents a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such areas sampling and test procedures for low oxygen levels should be undertaken and control conditions set up to ensure ample oxygen availability [Linde].

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

solvent, vapours, degreasing etc., evaporating from tank (in still air) 0.25- 0.5 m/s (50- 100 f/min.)
aerosols, fumes from pouring operations, 0.5- 1 m/s (100- 200 f/min.)
intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) 1- 2.5 m/s (200- 500 f/min.)
direct spray, spray painting in shallow booths, grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) 2.5- 10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range: 1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only.
Upper end of the range: 1: Disturbing room air currents 2: Contaminants of high toxicity.
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE
A black suspension. It's a 250mL suspension in a white plastic bottle with a tamper proof lid.

PHYSICAL PROPERTIES
- Liquid.
- Mixes with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°C)</td>
<td>Not Available</td>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°C)</td>
<td>Not Available</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>Not Available</td>
<td>pH (1% solution)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition Temp (°C)</td>
<td>Not Available</td>
<td>pH (as supplied)</td>
<td>3.0-7.0</td>
</tr>
<tr>
<td>Autoignition Temp (°C)</td>
<td>Not Available</td>
<td>Vapour Pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
<td>Specific Gravity (water=1)</td>
<td>1.29</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
<td>Relative Vapour Density (air=1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not Available</td>
<td>Evaporation Rate</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

- propylene glycol
 - log Kow (Prager 1995): -0.92
 - log Kow (Sangster 1997): -0.92

- glycerol
 - log Kow (Sangster 1997): -1.76

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.
Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Ingestion of finely divided carbon may produce gagging and constipation. Aspiration does not appear to be a concern as the material is generally regarded as inert and is often used as a food additive. Ingestion may produce a black stool.

EYE
- There is some evidence to suggest that this material can cause eye irritation and damage in some persons. Eyes exposed to carbon particulates may be liable to irritation and burning. These can remain in the eye causing inflammation lasting weeks, and can cause permanent dark dotty discolouration.

SKIN
- Irritation and skin reactions are possible with sensitive skin. The material may accentuate any pre-existing dermatitis condition. A single prolonged exposure is not likely to result in the material causing harm. However, when applied in large quantities to damaged skin as a topical preparation or by contact with clothing accidentally contaminated by the material, there may be the potential to absorb the material in harmful amounts. This can lead to shock. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- There is some evidence to suggest that this material, if inhaled, can irritate the throat and lungs of some persons. Not normally a hazard due to non-volatile nature of product. Impurities found in carbons, including iodine, can be toxic. Carbon dusts in the air may cause irritation of the mucous membranes, eyes and skin. Coughing, irritation of the upper airways and eye burning may occur.

CHRONIC HEALTH EFFECTS
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population. There is insufficient evidence to suggest that exposure to carbon black causes increased susceptibility to cancer or other ill effects. Some lung changes can occur after a prolonged period of exposure as well as increased strain on the right side of the heart.

continued...
TOXICITY AND IRRITATION

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

WATER:
CARBON, ACTIVATED:
■ No significant acute toxicological data identified in literature search.

D-SORBITOL:
TOXICITY
Oral (woman) TDLo: 1700 mg/kg/d
Oral (rat) LD50: 15900 mg/kg

IRRITATION

CARBON, ACTIVATED:
■ The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.
Evidence of carcinogenicity may be inadequate or limited in animal testing.

PROPYLENE GLYCOL:
TOXICITY
Oral (rat) LD50: 20000 mg/kg
Dermal (rabbit) LD50: 20800 mg/kg
Dermal (rabbit) LD50: 11890 mg/kg

IRRITATION
Skin (human): 500 mg/7days Mild
Skin (human): 104 mg/3d Intermit Moderate
Eye (rabbit): 100 mg - Mild
Eye (rabbit): 500 mg/24h - Mild

■ The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

GLYCEROL:
TOXICITY
Oral (Rat) LD50: 12600 mg/kg
Oral (Guinea pig) LD50: 7750 mg/kg
Oral (Human) TDLo: 1428 mg/kg
Intraperitoneal (Rat) LD50: 4420 mg/kg
Subcutaneous (Rat) LD50: 100 mg/kg
Intravenous (Rat) LD50: 5566 mg/kg
Oral (Mouse) LD50: 4090 mg/kg
Intraperitoneal (Mouse) LD50: 8700 mg/kg
Subcutaneous (Mouse) LD50: 91 mg/kg
Intravenous (Mouse) LD50: 4250 mg/kg

IRRITATION

■ For glycerol:
Acute toxicity: Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of 4000 mg/kg bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the...
skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser. Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is 10,000 mg/kg bw/day (20% in diet). At this dose level no systemic or local effects were observed. For inhalation exposure to aerosols, the NOAEC for local irritant effects to the upper respiratory tract is 165 mg/m3 and 662 mg/m3 for systemic effects.

Genotoxicity: Glycerol is free from structural alerts, which raise concern for mutagenicity. Glycerol does not induce gene mutations in bacterial strains, chromosomal effects in mammalian cells or primary DNA damage in vitro. Results of a limited gene mutation test in mammalian cells were of uncertain biological relevance. In vivo, glycerol produced no statistically significant effect in a chromosome aberrations and dominant lethal study. However, the limited details provided and the absence of a positive control, prevent any reliable conclusions to be drawn from the in vivo data. Overall, glycerol is not considered to possess genotoxic potential.

Carcinogenicity: The experimental data from a limited 2 year dietary study in the rat does not provide any basis for concerns in relation to carcinogenicity. Data from non-guideline studies designed to investigate tumour promotion activity in male mice suggest that oral administration of glycerol up to 20 weeks had a weak promotion effect on the incidence of tumour formation.

Reproductive and developmental toxicity: No effects on fertility and reproductive performance were observed in a two generation study with glycerol administered by gavage (NOAEL 2000 mg/kg bw/day). No maternal toxicity or teratogenic effects were seen in the rat, mouse or rabbit at the highest dose levels tested in a guideline comparable teratogenicity study (NOEL 1180 mg/kg bw/day).

CITRIC ACID:

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 3000 mg/kg</td>
<td>Skin (rabbit): 500 mg/24h - Mild</td>
</tr>
<tr>
<td></td>
<td>Eye (rabbit): 0.75 mg/24h- SEVERE</td>
</tr>
</tbody>
</table>

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

CARCINOGEN

Carbon black | International Agency for Research on Cancer (IARC) - Agents Group 2B
Reviewed by the IARC Monographs

continued...
Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

CARBON, ACTIVATED:
PROPYLENE GLYCOL:
GLYCEROL:
CITRIC ACID:
CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION:
■ DO NOT discharge into sewer or waterways.

GLYCEROL:
CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION:
■ For glycerol
log Kow : -2.66- -2.47
BOD 5: 0.617-0.87,31-51%
COD : 1.16,82-95%
ThOD : 1.217-1.56
Completely biodegradable.
Environmental fate:
Based on the relevant physical-chemical properties and the fact that glycerol is readily biodegradable, glycerol will partition primarily to water.
Biodegradability: Glycerol is considered to be readily biodegradable in the aquatic environment. Pre-adapted microorganisms can degrade glycerol rapidly under both aerobic and anaerobic conditions.
Bioaccumulation: Based on Log Kow -1.76, glycerol will have a low bioaccumulation potential and is not expected to bioaccumulate.
Photodegradation: The calculated half-life for the photo-oxidation (reaction with hydroxyl radicals) of glycerol in air is 6.8 hours (EPIWIN vs 3.04).
Stability in Water: Glycerol does not contain functional groups that are expected to react with water.
Transport between Environmental Compartments: From the EQC model (Mackay level III), it can be deduced that 100% of glycerol will end up in the water phase. Negligible amounts will be distributed towards soil, air and sediment.
Ecotoxicity:
Fish LC50: >5000 mg/l
Algae IC50: >2900 mg/l
Bacteria EC50: .10000 mg/l (Pseudomonas putida)
The weight of evidence indicates that glycerol is of low toxicity to aquatic organisms and this conclusion is supported by QSAR predictions. The lowest LC50 for fish is a 24-h LC50 of >5000 mg/l for Carassius auratus (Goldfish) and for aquatic invertebrates, a 24 h EC50 of >10000 mg/l for Daphnia magna is the lowest EC50. Several tests on algae are available, which suggest very low toxicity to a range of species, however their validity is uncertain. A QSAR prediction for the 96h EC50 to algae was 78000 mg/l. No toxicity towards the microorganism Pseudomonas putida was observed at 10000 mg/l after exposure for 16 hours. No long-term aquatic toxicity data is available. Screening studies are available on frog and carp embryos which indicate some effects on growth and hatching rates respectively at very high concentrations of glycerol, >7000 mg/l.
However, their ecological relevance is not clear.

D-SORBITOL:
Aquatic toxicity:
TLm 96: >1000 ppm

PROPYLENE GLYCOL:
■ log Kow (Prager 1995): - 0.92
■ log Kow (Sangster 1997): - 0.92
■ log Pow (Verschueren 1983): 4.7
■ BOD5: 0.955 (2.2
CARBOSORB XS®, ACTIVATED CHARCOAL, 20%, ORAL SUSPENSION

Section 12 - ECOLOGICAL INFORMATION

<table>
<thead>
<tr>
<th></th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>D- sorbitol</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>glycerol</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>citric acid</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Biodegradable in a waste treatment facility

BOD 5 if unstated: 0.42

ThOD: 0.686

Fish LC50: >100mg/L

Effects on algae and plankton: inhib. algae 100mg/L

Section 13 - DISPOSAL CONSIDERATIONS

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

• Reduction
• Reuse
• Recycling
• Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of continued...

BOD20: 1.225

ThOD: 1.685

log Kow: -1.41 - -0.3

Half-life (hr) air: 32

Henry's atm m³/mol: 1.20E-08

BOD 5 if unstated: 0.995, 2.2%

ThOD: 1.685

BCF: <1

Bioaccumulation: not sig

processes Abiotic: photoxid

GLYCEROL:

■ Algae IC50 (72hr.) (mg/l): 2900-10000
■ log Kow (Sangster 1997): - 1.76
■ log Pow (Verschueren 1983): 1.07692307

■ COD: 95%
■ ThOD: 93%

CITRIC ACID:

■ Algae IC50 (72hr.) (mg/l): 80
■ log Pow (Verschueren 1983): - 1.72
Section 13 - DISPOSAL CONSIDERATIONS

this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

• DO NOT allow wash water from cleaning or process equipment to enter drains.
• It may be necessary to collect all wash water for treatment before disposal.
• In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
• Where in doubt contact the responsible authority.
• Recycle wherever possible or consult manufacturer for recycling options.
• Consult State Land Waste Authority for disposal.
• Bury or incinerate residue at an approved site.
• Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:
None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE None

REGULATIONS
Regulations for ingredients

D-sorbitol (CAS: 50-70-4) is found on the following regulatory lists;
"Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory of Chemical Substances (AICS)",
"Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines","CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 18: List of products to which the Code does not apply","IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances","OECD Representative List of High Production Volume (HPV) Chemicals"

carbon, activated (CAS: 7440-44-0) is found on the following regulatory lists;
"Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory of Chemical Substances (AICS)",
"Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines","International Air Transport Association (IATA) Dangerous Goods Regulations","International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List","OECD Representative List of High Production Volume (HPV) Chemicals"

propylene glycol (CAS: 57-55-6) is found on the following regulatory lists;
"Australia Exposure Standards","Australia Hazardous Substances","Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory of Chemical Substances (AICS)","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 18: List of products to which the Code does not apply","IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances","International Council of Chemical Associations (ICCA) - High Production Volume List","OECD Representative List of High Production Volume (HPV) Chemicals"

glycerol (CAS: 56-81-5) is found on the following regulatory lists;
"Australia Exposure Standards","Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory
of Chemical Substances (AICS),"Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines","CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 18: List of products to which the Code does not apply","IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances","International Council of Chemical Associations (ICCA) - High Production Volume List","OECD Representative List of High Production Volume (HPV) Chemicals"

citric acid (CAS: 77-92-9) is found on the following regulatory lists;
"Australia High Volume Industrial Chemical List (HVICL),"Australia Inventory of Chemical Substances (AICS),"Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines","CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","International Council of Chemical Associations (ICCA) - High Production Volume List","OECD Representative List of High Production Volume (HPV) Chemicals"

water (CAS: 7732-18-5) is found on the following regulatory lists;
"Australia Inventory of Chemical Substances (AICS),"IMO IBC Code Chapter 18: List of products to which the Code does not apply","OECD Representative List of High Production Volume (HPV) Chemicals"

No data for Carbosorb XS®, Activated Charcoal, 20%, Oral Suspension (CW: 23-2283)